The Best and Worst Foods for Altering Testosterone

Read this in MD and thought it was a great read.....

Dietary strategies to promote natural testosterone production may seem meaningless to a person using anabolic steroids. As a matter of fact, they pretty much are, since androgen levels are controlled via syringe, rather than by the innate feedback system. The body monitors testosterone levels and adjusts production of the hormone within the testes by altering output of stimulatory hormones released from the hypothalamus and pituitary (glands in the brain). If the circulating (blood) testosterone concentration is low, the hypothalamus detects this and signals the pituitary gland to release a hormone that stimulates the testes called LH.

LH travels through the blood to the testes and drives testosterone production to increase output. As testosterone concentration rises in the blood, the hypothalamus detects the elevation and reduces the pituitary’s demand.1 In the case of a person using anabolic steroids, androgen levels are kept higher than the cut-off chronically, so the testes do not need to function (relative to producing testosterone) and atrophy (shrivel) as they do not receive a LH signal from the pituitary. However, when the cycle is finished, close attention needs to be paid to promoting the restoration of natural testosterone production.

Of course, the system is not as simple as one switch that is either ‘off’ or ‘on.’ In an anabolic, steroid-free environment, a person’s testosterone concentration is affected by conditions such as: sleep, physical demand, available rest, amount and quality of food, and presence of certain nutrients.2,3 While there is no scientific evidence that any one food or even the most selective diet will make a difference in regard to testosterone level and subsequent muscle growth over time (since no one has ever studied the demographics of strength and muscularity), the discriminating bodybuilder or fitness enthusiast will pay close attention to what he/she consumes. After all, it does no good to struggle to build muscle in the gym if a fad-diet lifestyle is sabotaging the anabolic response. Also, informal observations are fairly convincing in suggesting that vegans have a difficult time putting on muscle and the chronically undernourished live on the threshold of catabolism.

Before plunging into the buffet of knowledge ahead, this does not imply that other hormones that are modulated by the diet are not equally important. For the sake of clarity and brevity, this article will focus solely on the testosterone-diet associations.

Testosterone is a cholesterol-based chemical and many industrial sources (pharmaceutical companies) synthesize testosterone using steroid-ring precursors. However, testosterone is not created from dietary cholesterol in the body to a great degree. The starting chemical for endogenous production (natural testosterone production) appears to be acetyl-CoA, which is produced as sugar (glucose) and burned for calories. The body produces sugar in times of need, so even if one is on a strict ketogenic diet, acetyl-CoA should still be available. Acetyl-CoA goes through a series of reactions to become a molecule called hydroxymethylglutary-CoA, or HMG-CoA.4 Fortunately for the ketogenic dieters, HMG-CoA is also produced during ketogenesis, so the starting blocks for steroid production are well-provided.

HMG-CoA is then shuttled into another series of reactions to form squalene. A key reaction responsible for changing HMG-CoA is called the rate-limiting step. It is like the slowest walker on a prison chain gang. No matter how fast the rest of the crew is, they cannot move faster than the slowest moving prisoner. The top-selling cholesterol-lowering drugs, called statins (e.g., Lipitor®), work by making the slowest, rate-limiting reaction move even slower.5 Ironically, dieticians and drug companies worked for years on limiting dietary cholesterol, but it is the body’s own cholesterol-making machinery that is the cause of most cholesterol-related health problems.

Squalene is converted to a primitive steroid called lanosterol; this is the steroid equivalent of a cave man. Lanosterol is finally processed to form cholesterol; cholesterol can be processed to the more readily-recognized steroid hormones, such as: testosterone, androstenedione, DHEA, estradiol, progesterone, cotisol, etc.6 It is difficult to keep track of the number of chemical reactions involved, but it is a complicated process. This very brief introduction into steroidogenesis is provided to illustrate that the body doesn’t make testosterone simply and there really is no way to directly consume something that will directly convert into testosterone— at least not a food product. This revelation will likely disappoint fans of Rocky Mountain oysters and participants at Testicle Festival eating contests. Certainly, several products have been introduced into the sports nutrition market that are steroid precursors, or prohormones. However, these are not chemicals that are common in the food chain and some are thinly-veiled drugs.

The reactions in creating a steroid backbone (let alone the specific androgens, estrogens, glucocorticoids, etc.) require a great deal of energy. Additionally, the processes are predominantly oxidizing reactions. The pressure in Western society has long been to promote antioxidant consumption. Antioxidants suppress oxidizing reactions; this is beneficial in many situations, as free radicals can damage structural proteins in the cell or the DNA. However, the body burns calories and generates bio-molecules through oxidizing reactions as well, so the question must be asked, “Can you have too much of a good thing (antioxidants)?” In exploring this many, many years ago, I learned of reductive stress, but it appears to be a neglected area of research.