Other than this study done on rats, I can't really find any science based evidence.

I know some people swear by it then some people say it doesn't make a difference.

Does anyone have any scientific backed evidence or personal experience between using T4 on gh and not adding in the t4?




Acta Endocrinol (Copenh). 1981 Apr;96(4):475-9.

The effect of growth hormone on the plasma levels of T4, free-T4, T3, reverse T3 an TBG in hypopituitary patients.

Gács G, Bános C.


Abstract


The plasma concentrations of thyroxine (T4), free thyroxine (free-T4), triiodothyronine (T3), reverse triiodothyronine (rT3), TSH and thyroxine-binding globulin (TBG) were measured in 19 children suffering from idiopathic growth hormone deficiency. Blood was taken before and one month after growth hormone treatment. Ten patients were hypothyroid (group 1) and 9 were euthyroid (group 2). The basal T3 and rT3 levels correlated well with the T4 concentrations. Free-T4 levels were very low in all the hypothyroid patients and proved to be the most reliable index of TSH deficiency. TBG concentration was high in th hypopituitary patients regardless of their thyroid function. Following growth hormone treatment T4, free-T4 and rT3 levels fell in both groups. The T3 concentration rose in group 1 but no change was seen in group 2. There was a significant correlation between the changes of T4 and T3, such that the increase in T3 level was greatest in those with only a slight reduction of T4 concentration and no T3 increase was seen with more marked T4 decreases. The plasma TBG concentration is enhanced in growth hormone deficiency causing relatively high T4 values. Growth hormone treatment reduces T4 secretion and affects the peripheral metabolism of thyroid hormones resulting in an increase of T3 and a reduction of rT3 concentration.


PMID: 6782790 [PubMed - indexed for MEDLINE]


Effect of thyroid hormone and growth hormone on recovery from hypothyroidism of epiphyseal growth plate cartilage and its adjacent bone.

Lewinson D, Harel Z, Shenzer P, Silbermann M, Hochberg Z.


Source

Laboratory of Musculoskeletal Research, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa.


Abstract


Hypothyroidism was induced in young female Sprague-Dawley rats by the addition of methimazole (0.67 mg/ml) to drinking water for a period of 7 weeks (7-14 weeks of age). The responses of the articular cartilage, epiphyseal growth plate cartilage, epiphyseal trabecular bone, and metaphyseal trabecular bone in the proximal tibia were assessed by structural parameters. In addition, replacement therapies were introduced for the last 2 weeks of the experimental period. These included 0.7 U/kg BW human GH (hGH), 15 micrograms/kg BW L-T4 (T4), and a combination of hGH and T4 at the same doses. In the hypothyroid rats, the width of epiphyseal growth plate cartilage decreased by 27%, that of articular cartilage by 35%, epiphyseal trabecular bone volume by 30%, and metaphyseal trabecular bone volume by 66% relative to those in age-matched control tissues. T4 treatment led to a full restoration of the epiphyseal trabecular bone and surpassed by 40% the control value. The magnitude of the articular cartilage and the epiphyseal trabecular bone volume returned to control values, while that of metaphyseal trabecular bone was 68% of control values. Treatment with hGH did not improve the epiphyseal growth plate cartilage or articular cartilage. It did restore epiphyseal trabecular bone to almost normal values, but metaphyseal trabecular bone improved to only a small though significant level (45% of control value). The combination of T4 and hGH resulted in an additional enlargement in the width of the epiphyseal growth plate cartilage and an increase in metaphyseal trabecular bone volume compared to those in the T4 group. Qualitative examinations indicated that it was only in the T4 and T4 plus hGH groups that the lowest chondrocytes in the epiphyseal growth plate cartilage resumed their normal hypertrophied size. These results suggest that the change in the hypothyroid state do not rely solely on the lack of pituitary GH synthesis and secretion, as replacement by exogenous GH did not restore normal epiphyseal growth plate cartilage morphology or its remodeling into metaphyseal trabecular bone. Treatment with T4 (which restored endogenous pituitary GH to 30% of control levels) results in full recovery of the epiphyseal growth plate cartilage morphology along with its associated metaphyseal trabecular bone. In addition, it can also be concluded that the decrease in epiphyseal trabecular bone volume observed in the hypothyroid animals was due solely to the GH-deficient state that accompanied hypothyroidism.


PMID: 2912707 [PubMed - indexed for MEDLINE]